Healthy robusta cherries. Photo by Armin Hari.

History of Robusta

Intro­duc­tion

The roots of Cof­fea canepho­ra, com­mon­ly called robus­ta[1], trace back hun­dreds of thou­sands of years to the humid, under­sto­ry ever­green forests in trop­i­cal areas of cen­tral and west­ern sub-Saha­ran Africa — a region with expan­sive geo­graph­ic dis­tri­b­u­tion from Guinea to Ugan­da to Ango­la (Dussert et al., 1999). It is one of the two species in the Cof­fea genus (which com­pris­es a total of 131 species; Davis & Rako­tona­so­lo, 2021) that are com­mer­cial­ly cul­ti­vat­ed on a glob­al scale, and it is visu­al­ly rec­og­niz­able by its unique­ly large blos­soms and wide, spread­ing canopy.

Through­out his­to­ry, this species has been grown in numer­ous forms and eco­types, and in regions beyond its birth­place. Today, robus­ta is cul­ti­vat­ed com­mer­cial­ly in about 20 coun­tries world­wide, char­ac­ter­ized by warm cli­mates and/​or high humid­i­ty. Robusta’s genet­ic diver­si­ty is vast, and while sci­en­tists have been research­ing this since the 1980s, there is still much to uncov­er about the species. Nonethe­less, one thing about robus­ta is cer­tain: it has dra­mat­i­cal­ly evolved into a major mar­ket force.

In recent decades, robus­ta cul­ti­va­tion has steadi­ly increased, ris­ing from 25% to 40% of total glob­al cof­fee pro­duc­tion since the ear­ly 1990s (Aba­cus­bio, 2023, p. 13). Until now, Cof­fea ara­bi­ca—the oth­er glob­al­ly dom­i­nant com­mer­cial cof­fee species — has held sway over most of the cof­fee mar­ket due to pref­er­ences for its cup qual­i­ty. Many fac­tors, includ­ing increas­ing demand for cof­fee, have led to expan­sions in robus­ta pro­duc­tion in recent years. In 2023 alone, 177 mil­lion 60-kilo­gram bags of cof­fee were con­sumed world­wide — a 2.2% increase from the 2022 – 23 pro­duc­tion year and a strik­ing 4.5% jump from 2019 – 2020 (Inter­na­tion­al Cof­fee Orga­ni­za­tion, 2024) — and demand is not expect­ed to slow down.

With soar­ing demand at cen­ter stage, along­side the expect­ed neg­a­tive effects of cli­mate change and lim­it­ed his­tor­i­cal invest­ment in cof­fee agri­cul­tur­al inno­va­tion, an expand­ed role for robus­ta in the glob­al cof­fee mar­ket is both prac­ti­cal and nec­es­sary. How­ev­er, under­stand­ing of robus­ta is some­what lim­it­ed among buy­ers, con­sumers, and sci­en­tists alike, and its full poten­tial in meet­ing mar­ket demand has yet to be realized.

About robus­ta — a species of untapped potential

Robus­ta has its wild ori­gins in cen­tral and west­ern sub-Saha­ran Africa, main­ly in the humid under­sto­ry of low-ele­va­tion ever­green forests (50 – 1500 m), but some­times in sea­son­al­ly dry humid forests or gallery forests (Davis et al., 2006).

Much of the move­ment of robus­ta beyond its cen­ters of ori­gin and domes­ti­ca­tion, as well as the increase in the pop­u­lar­i­ty of its pro­duc­tion dur­ing the ear­ly 1900s, can be attrib­uted to the spread of cof­fee leaf rust — a fun­gal dis­ease that rav­aged ara­bi­ca cof­fee plants and remains a sig­nif­i­cant glob­al con­cern. One of the great­est ben­e­fits of robus­ta pro­duc­tion is that some vari­eties pos­sess an excep­tion­al­ly high nat­ur­al resis­tance to major pests and dis­eases that impede suc­cess­ful and prof­itable pro­duc­tion, includ­ing rust; these plants can often thrive under harsh con­di­tions (Cam­puzano-Duque & Blair, 2022). This resilience or robust­ness is one rea­son why Cof­fea canepho­ra is often col­lo­qui­al­ly referred to as robus­ta (nomen­cla­ture that was first used by Lin­den in 1900; Dagoon, 2005).

Glob­al growth in demand for robus­ta has been dri­ven by the advent of sol­u­ble cof­fee and the increas­ing pop­u­lar­i­ty of robus­ta in blends. The expan­sion of robus­ta pro­duc­tion to meet this demand has been pos­si­ble because robus­ta can grow in areas unsuit­able for ara­bi­ca. For exam­ple, it can pro­duce high crop yields and main­tain stress resilience in hot­ter, more humid tem­per­a­ture ranges than ara­bi­ca, which typ­i­cal­ly occur at low­er ele­va­tions (between 200 – 800 meters above sea lev­el; Slipchenko, 2021). Robus­ta plants typ­i­cal­ly have greater crop yields, con­tain high­er lev­els of caf­feine, low­er lev­els of sug­ar, high­er lev­els of sol­u­ble solids, and are less sus­cep­ti­ble to dam­ag­ing pests and dis­eases (Goldem­berg et al., 2015).

Many observers spec­u­late that robus­ta may increas­ing­ly serve as an alter­na­tive to ara­bi­ca as ris­ing tem­per­a­tures and altered pre­cip­i­ta­tion pat­terns make ara­bi­ca cul­ti­va­tion more chal­leng­ing in the com­ing decades (Bunn et al., 2015; de Aquino et al., 2022; Dinh et al., 2022; Kath et al., 2022; Kath et al., 2023). Despite the oppor­tu­ni­ties pre­sent­ed by robus­ta, it faces con­sid­er­able chal­lenges of its own. One pri­ma­ry threat to long-term, sus­tain­able robus­ta pro­duc­tion from diverse ori­gins is the some­times steep dis­par­i­ties in pro­duc­tiv­i­ty[2] and prof­itabil­i­ty[3], caused by numer­ous fac­tors, includ­ing labor costs and increased com­pe­ti­tion from oth­er crops. Addi­tion­al­ly, despite its oft-cit­ed robust­ness,” robus­ta is still sen­si­tive to envi­ron­men­tal dis­tur­bances. Robus­ta plants gen­er­al­ly have high pre­cip­i­ta­tion needs, and recent research sug­gests that robusta’s abil­i­ty to thrive in hot­ter cli­mates may have been pre­vi­ous­ly over­stat­ed; tem­per­a­tures over 20.5 degrees Cel­sius can have sig­nif­i­cant­ly neg­a­tive impact on yields (Kath et al., 2020; Tournebize et al., 2022).

More­over, many robus­ta vari­eties are at least some­what sus­cep­ti­ble to key dis­eases and pests, such as cof­fee wilt dis­ease, red blis­ter dis­ease, stem bor­er, cof­fee berry dis­ease, cof­fee berry bor­er, nema­todes, and even cof­fee leaf rust, among oth­ers (Vega et al., 2006).

Anoth­er key dif­fer­ence between robus­ta and ara­bi­ca per­tains to taste and cup qual­i­ty (Leroy et al., 2006). Cof­fee brewed from robus­ta beans is often low­er in acid­i­ty, high­er in bit­ter­ness, and more full-bod­ied” due to its pyrazine con­tent (Sem­mel­roch & Grosch, 1995), an aro­mat­ic com­pound known for its earth­i­ness. While the cup qual­i­ty of robus­ta is often dis­par­aged, when han­dled and processed prop­er­ly, it can serve as a prod­uct for spe­cial­ty mar­kets (Ugan­da Cof­fee Devel­op­ment Author­i­ty, 2019). Agro­nom­ic and post-har­vest pro­cess­ing efforts, includ­ing qual­i­ty con­trol of fer­men­ta­tion process­es, can make an imme­di­ate and cru­cial dif­fer­ence in robus­ta pro­duc­tion and qual­i­ty. How­ev­er, there remains sig­nif­i­cant unex­plored ter­ri­to­ry in opti­miz­ing robusta’s per­for­mance in the field and its cup qual­i­ty on a com­mer­cial scale. 

The sto­ry of a species: The his­to­ry of robusta’s cul­ti­va­tion and dispersal

The first doc­u­ment­ed cul­ti­va­tion of robus­ta began around 1870 in Con­go, using genet­ic mate­r­i­al from the Lomani Riv­er region in what is now the Demo­c­ra­t­ic Repub­lic of Con­go (Berthaud & Char­ri­er, 1988). How­ev­er, it is like­ly that small-scale pro­duc­tion by indi­vid­ual farm­ers and their fam­i­lies had been ongo­ing for decades pri­or to this point. A sub­type of robus­ta called koil­lou” (lat­er renamed conilon” through lin­guis­tic dis­tor­tion when it was intro­duced to Brazil) was observed in the wild by the French in 1880 between Gabon and the mouth of the Con­go Riv­er, main­ly along the Kouilou-Niari Riv­er region. The species was named by the botanist Louis Pierre in 1895. Pierre, who worked at the Muséum Nation­al d’Histoire Naturelle in France, received a sam­ple of the plant col­lect­ed in Gabon by the Rev­erend Théophile Klaine. The name—Cof­fea canepho­ra var. Pierre ex A. Froehn­er — was first pub­lished along with a descrip­tion of the species by Froehn­er (1897).

One year lat­er, Edouard Luja was sent to col­lect species with eco­nom­ic poten­tial in what was then called Bel­gian Con­go (now the Demo­c­ra­t­ic Repub­lic of Con­go) in prepa­ra­tion for the 1900 Paris Expo­si­tion. Dur­ing this mis­sion, Luja col­lect­ed sev­er­al thou­sand seeds from a new” cof­fee species found in an ear­ly robus­ta plan­ta­tion in the region (Benoit, 1968). Bel­gian Con­go became one of the prin­ci­pal cen­ters of diver­si­ty, from which new lines were dis­trib­uted through­out the tropics.

At the turn of the cen­tu­ry, the species began to spread to oth­er parts of the world. Robus­ta seeds from Con­go were sent to Brus­sels, and from there they were dis­patched under the name robus­ta” to Java, Indone­sia, where they were quick­ly accept­ed by farm­ers due to their high pro­duc­tiv­i­ty and appar­ent resis­tance to cof­fee leaf rust — espe­cial­ly as a major out­break of the dis­ease affect­ed C. ara­bi­ca plants in South­east Asia in the late 1800s (Cramer, 1957). In fact, it was in Indone­sia that pio­neer­ing, sys­tem­at­ic robus­ta breed­ing was first con­duct­ed (Fer­w­er­da, 1948). These mate­ri­als were lat­er enriched with genet­ic mate­r­i­al from Gabon and Ugan­da. Around the same time, oth­er robus­ta mate­r­i­al select­ed from wild pop­u­la­tions was intro­duced to areas of Ivory Coast, Guinea, and Ugan­da (Char­ri­er and Eskes, 1997).

From here, robus­ta con­tin­ued to spread around the world, enter­ing India via Java, with lat­er intro­duc­tions from West Africa. Mate­r­i­al select­ed in Java was rein­tro­duced to Cen­tral Africa from 1910 onward and to the Demo­c­ra­t­ic Repub­lic of Con­go (then Bel­gian Con­go) in 1916 at the Insti­tut Nation­al pour l’É­tude Agronomique du Con­go (INEAC), which became the cen­ter for selec­tion from 1930 to 1960. With­in Africa, robus­ta was pro­duced in Mada­gas­car, Ugan­da, Ghana, and Ivory Coast. Endem­ic vari­ants often inter­min­gled with those intro­duced from com­mer­cial pro­duc­tion in oth­er parts of the continent.

Robus­ta was lat­er intro­duced to Latin Amer­i­ca, with the conilon group intro­duced in Brazil in 1912 to Espir­i­tu San­to. Addi­tion­al com­mer­cial intro­duc­tions occurred in Cen­tral Amer­i­ca via Guatemala between 1930 and 1935

Today, just six coun­tries — Viet­nam, Brazil, Indone­sia, Ugan­da, India, and Côte d’Ivoire — pro­duce 95% of the world’s robus­ta (Aba­cus­bio, 2023). Laos, Tan­za­nia, Mada­gas­car, and Thai­land fol­low these nations in pro­duc­tion, mak­ing up the remain­der of the top ten pro­duc­ing regions world­wide. Coun­tries in Asia and Ocea­nia are col­lec­tive­ly the largest pro­duc­ers of robus­ta, gen­er­at­ing 60% of the world’s out­put at 41.5 mil­lion 60 kg bags annu­al­ly. This region is fol­lowed by South Amer­i­ca, which pro­duces 28% of the world’s robus­ta, gen­er­at­ing 19.8 mil­lion bags of cof­fee in the 2020 – 21 year (Aba­cus­bio, 2023).

Dis­cov­er­ing robusta’s genet­ic diversity

Robus­ta cof­fee has a wide scope of genet­ic diver­si­ty, with many dis­tinct sub-pop­u­la­tions. Wild pop­u­la­tions are the pri­ma­ry genet­ic rel­a­tives of robus­ta cof­fee, and cul­ti­vat­ed cof­fee has changed rel­a­tive­ly lit­tle from its wild prog­en­i­tors. Many unknown vari­a­tions, includ­ing poten­tial­ly ben­e­fi­cial traits relat­ed to pro­duc­tion and cup qual­i­ty, exist with­in the robus­ta gene pool. By and large, these hid­den vari­a­tions have yet to be explored and uti­lized by sci­en­tists and breed­ers. Deep­en­ing the under­stand­ing of robus­ta diver­si­ty and its inte­gra­tion into breed­ing pro­grams is cru­cial for con­tin­u­ous and long-term genet­ic gains.

Robus­ta is also a genet­ic rel­a­tive of ara­bi­ca (Baw­in et al., 2020; Chad­burn & Davis, 2017; Scal­abrin et al., 2020) and is close­ly relat­ed enough that his­tor­i­cal breed­ing efforts have suc­cess­ful­ly trans­ferred some dis­ease resis­tance from robus­ta into ara­bi­ca cul­ti­vars (Bet­ten­court, 1973). Poten­tial dis­ease and pest resis­tance trans­fer­ence remains pos­si­ble for future breed­ing efforts.

Many dif­fer­ent com­mon terms are used to describe robus­ta in the areas where it is grown. These terms include robus­ta,” conilon,” ngan­da,” koillou/​quillou,” and oth­ers. These terms are gen­er­al­ly region­al and col­lo­qui­al, and they do not nec­es­sar­i­ly cor­re­spond to spe­cif­ic genet­i­cal­ly dis­tinct vari­eties or clones.

What sci­en­tists do know is that robus­ta is a diploid species divid­ed into two broad genet­ic groups: Guinean and Con­golese. The Guinean group — which is gen­er­al­ly char­ac­ter­ized by nar­row intern­odes, high caf­feine con­tent, low bean weight, drought resis­tance, sec­ondary branch­ing, and ear­ly har­vest — orig­i­nat­ed in cen­tral-west Africa. In con­trast, the Con­golese group — which typ­i­cal­ly has high­er rust resis­tance, medi­um caf­feine con­tent, high bean weight, drought sus­cep­ti­bil­i­ty, larg­er intern­odes, tall growth, and late har­vest­ing — orig­i­nat­ed in cen­tral Africa (Her­rera & Lam­bot, 2017). Among these two groups, the Con­golese is the most wide­spread. Addi­tion­al­ly, with­in each group, there are dif­fer­ent pop­u­la­tions or sub­groups (see Fig­ure 1 below).

It is note­wor­thy to high­light that there have been mas­sive intro­duc­tions of Con­golese-type trees into areas of Côte d’Ivoire that are home to wild endem­ic pop­u­la­tions from the Guinean gene pool, which threat­en the genet­ic integri­ty of wild pop­u­la­tions from the Guinean gene pool (Gnapi et al., 2022).

Picture1
Figure 1. Genetic subgroups of robusta depicting distinct geographic origins and domestication centers. Source: Adapted from Mérot‑L’Anthoëne et al., 2019 (figure 3a).

To con­serve robusta’s vast diver­si­ty, field gene banks in sev­er­al pro­duc­ing coun­tries in Africa and Asia have estab­lished repos­i­to­ries of robus­ta genet­ics (Bramel et al., 2017). Tar­get­ed, glob­al­ly coor­di­nat­ed robus­ta col­lec­tion and exchange were con­duct­ed start­ing in the 1960s from cen­ters of domes­ti­ca­tion.” Impor­tant col­lect­ing mis­sions includ­ed a mis­sion to Côte d’Ivoire, which col­lect­ed 700 wild geno­types by ORSTROM in col­lab­o­ra­tion with the Cen­tre de Coopéra­tion Inter­na­tionale en Recher­ché Agronomique pour le Développe­ment. Addi­tion­al­ly, the species has been col­lect­ed in Guinea, Cameroon, the Con­go, and the Cen­tral African Repub­lic. From these col­lect­ing mis­sions, robus­ta was intro­duced to field genebanks around the world, includ­ing in Cameroon, Ivory Coast, Mada­gas­car, India, and Cos­ta Rica, among oth­ers. Wher­ev­er robus­ta germplasm has been intro­duced, it has faced — and con­tin­ues to face — sig­nif­i­cant man­age­ment and genet­ic ero­sion chal­lenges (Bramel et al., 2017). 

Robus­ta in farm­ers’ fields

Because robus­ta nec­es­sar­i­ly cross-pol­li­nates — a sin­gle robus­ta clone can­not suc­cess­ful­ly pol­li­nate its own flow­ers, as ara­bi­ca trees can do — but requires pollen from two dif­fer­ent types of plants to pro­duce new cher­ries (sci­en­tists call this allog­a­mous”; Nowak, 2011) — sub­types grown in the same field typ­i­cal­ly inter­breed (Thomas, 1935). For this rea­son, it is nec­es­sary for farm­ers to grow more than one type of robus­ta clone in their fields to ensure suc­cess­ful pol­li­na­tion and fruit pro­duc­tion. Robus­ta plan­ta­tions are there­fore nev­er genet­i­cal­ly uni­form. His­tor­i­cal­ly, robus­ta farm­ers had lit­tle aware­ness of which vari­eties or sub­types they were grow­ing, although this aware­ness is increasing.

Most cur­rent­ly cul­ti­vat­ed robus­ta con­sists either of trees orig­i­nat­ing from open-pol­li­nat­ed seeds (Labouisse et al., 2020) or mul­ti-line clones (these vari­eties, which are also called poly­clon­al,” are com­prised of an inten­tion­al mix of genet­i­cal­ly dis­tinct clones; Cam­puzano-Duque & Blair, 2022; Mon­tagnon et al., 2003; Berthaud & Char­ri­er, 1998).

How­ev­er, not all robus­ta types can suc­cess­ful­ly grow togeth­er in a field. The cross-com­pat­i­bil­i­ty of types is genet­i­cal­ly con­trolled; in oth­er words, some vari­eties are unable to fer­til­ize one anoth­er (Lash­er­mes et al., 1996; Prakash, 2018). So far, research on opti­mal com­bi­na­tions of sub­types in pro­duc­tion has been scarce, but one key con­sid­er­a­tion is simul­ta­ne­ous flow­er­ing (Sil­va et al., 2024).

In dif­fer­ent pro­duc­tion regions, the release and dis­tri­b­u­tion of such mix­es to farm­ers is han­dled dif­fer­ent­ly. For exam­ple, in West Africa, it is com­mon for breed­ers to cre­ate poly­clon­al seed vari­eties (i.e., mul­ti­ple dif­fer­ent types of robus­ta are dis­trib­uted togeth­er in the same seed pack­ets to farm­ers). In Brazil, it is more com­mon for breed­ers to cre­ate mul­ti­ple unique clones that are then test­ed for com­pat­i­bil­i­ty; the high­est-per­form­ing com­ple­men­tary clones are then prop­a­gat­ed and released to farm­ers as clon­al­ly prop­a­gat­ed seedlings (Depo­lo et al., 2022; Prakash, 2018).

The future of robusta

The world may soon face chal­lenges in keep­ing up with the ris­ing demand for robus­ta, just as it cur­rent­ly does for ara­bi­ca (Aba­cus­bio, 2023). While some strong breed­ing ini­tia­tives have emerged at nation­al cof­fee insti­tutes across Asia, Africa, and Latin Amer­i­ca, there remains a sig­nif­i­cant oppor­tu­ni­ty for sci­en­tists to bet­ter under­stand robusta’s genet­ic diver­si­ty and lever­age it through mod­ern­ized breed­ing ini­tia­tives. This can strength­en the species’ long-term via­bil­i­ty for farm­ers by focus­ing on traits such as yield, dis­ease resis­tance, cli­mate resilience, and selec­tive improve­ments in cup qual­i­ty. Col­lab­o­ra­tions between sci­en­tists and insti­tu­tions can enhance shared ser­vices and tools, expand knowl­edge, and accel­er­ate efforts to devel­op and deploy inno­va­tions. Clear­ing a path for trans­for­ma­tive inno­va­tion in robus­ta will help safe­guard the well-being of cof­fee farm­ing com­mu­ni­ties and the glob­al cof­fee indus­try as a whole.

Foot­notes

[1] Through­out this essay and the cat­a­log gen­er­al­ly, we use this term​“robus­ta” to refer to the entire C. canepho­ra species and all its subtypes.

[2] Com­pare 1.9 bags/​ha in Côte d’Ivoire to 10.4 or 47.7 bags/​ha in Ugan­da and Viet­nam respec­tive­ly; see Table 1 in Aba­cus­bio, 2023.

[3] See Mar­tinez, 2023; Hasan et al., 2020.

Ref­er­ences

Aba­cus­bio. (2023). Oppor­tu­ni­ties for robus­ta vari­ety inno­va­tion [White paper]. World Cof­fee Research. https://​world​cof​feere​search​.org/​r​e​s​o​u​r​c​e​s​/​o​p​p​o​r​t​u​n​i​t​i​e​s​-​f​o​r​-​r​o​b​u​s​t​a​-​v​a​r​i​e​t​y​-​i​n​n​o​v​ation

Baw­in, Y., Rut­tink, T., Stae­lens, A., Haege­man, A., Stof­fe­len, P., Mwan­ga, J. I. M., Roldán‐​Ruiz, I., Hon­nay, O., & Janssens, S. B. (2020). Phy­loge­nom­ic analy­sis clar­i­fies the evo­lu­tion­ary ori­gin of Cof­fea ara­bi­ca. Jour­nal of Sys­tem­at­ics and Evo­lu­tion, 59(5), 953 – 963. https://​doi​.org/​10​.​1111​/​j​s​e​.​12694

Benoit, P. L. G. (1968). Luja (Edouard Pierre). In Biogra­phie belge d’Outremer (pp. 676 – 678). Académie Royale des Sci­ences d’Outré-Mer.

Berthaud, J., & Char­ri­er, A. (1988). Use and val­ue of genet­ic resources of Cof­fea for breed­ing and their long-term con­ser­va­tion. In Mit­teilun­gen aus dem Insti­tut für all­ge­meine Botanik in Ham­burg (Vol. 23a, pp. 53 – 64). https://​hori​zon​.doc​u​men​ta​tion​.ird​.fr/​e​x​l​-​d​o​c​/​p​l​e​i​n​s​_​t​e​x​t​e​s​/​p​l​e​i​n​s​_​t​e​x​t​e​s​_​5​/​b​_​f​d​i​_​30​-​30​/​31603.pdf

Berthaud, J. (1986). Les ressources géné­tiques pour l’amélioration des caféiers africains diploides [Doc­tor­al the­sis, Uni­ver­si­ty of Paris]. Orstom. https://​hori​zon​.doc​u​men​ta​tion​.ird​.fr/​e​x​l​-​d​o​c​/​p​l​e​i​n​s​_​t​e​x​t​e​s​/​d​i​v​e​r​s​11​-​12​/​16623.pdf

Bet­ten­court, A. J. (1973). Con­sid­er­ações gerais sobre o Híbri­do de Tim­or’ (Insti­tu­to Agronômi­co de Camp­inas. Cir­cu­lar nº 23:20).

Botan­ic Gar­dens Con­ser­va­tion Inter­na­tion­al, PlantSearch. (2023, March 9). https://​www​.bgci​.org

Bramel, P., Krish­nan, S., Hor­na, D., Lain­off, B., & Mon­tagnon, C. (2017). Glob­al con­ser­va­tion strat­e­gy for cof­fee genet­ic resources. Crop Trust & World Cof­fee Research. https://​world​cof​feere​search​.org/​r​e​s​o​u​r​c​e​s​/​g​l​o​b​a​l​-​c​o​f​f​e​e​-​c​o​n​s​e​r​v​a​t​i​o​n​-​s​t​r​ategy

Bunn, C., Läder­ach, P., Ovalle Rivera, O., & Kirschke, D. (2015). A bit­ter cup: Cli­mate change pro­file of glob­al pro­duc­tion of Ara­bi­ca and Robus­ta cof­fee. Cli­mat­ic Change, 129(1), 89 – 101. https://​doi​.org/​10​.​1007​/​s​10584

Cam­puzano-Duque, L. F., & Blair, M. W. (2022). Strate­gies for robus­ta cof­fee (Cof­fea canepho­ra) improve­ment as a new crop in Colom­bia. Agri­cul­ture, 12(10), 1576. https://​doi​.org/​10​.​3390​/​a​g​r​i​c​u​l​t​u​r​e​12101576

Chad­burn, H., & Davis, A. P. (2017). Cof­fea steno­phyl­la. The IUCN Red List of Threat­ened Species. Inter­na­tion­al Union for Con­ser­va­tion of Nature and Nat­ur­al Resources. http://​dx​.doi​.org/​10​.​2305​/IUCN

Cramer, P. J. S., & Well­man, F. L. (1957). A review of lit­er­a­ture of cof­fee research in Indone­sia. Inter-Amer­i­can Insti­tute of Agri­cul­tur­al Sci­ences. https://​repos​i​to​rio​.iica​.int/​h​a​n​d​l​e​/​11324​/​14860

Char­ri­er, A., & Eskes, A. B. (1997). Les caféiers. In A. Char­ri­er et al. (Eds.), L’Amélioration des Plantes Trop­i­cales (pp. 171 – 196). CIRAD-Orstom. https://​hori​zon​.doc​u​men​ta​tion​.ird​.fr/​e​x​l​-​d​o​c​/​p​l​e​i​n​s​_​t​e​x​t​e​s​/​d​i​v​e​r​s​09​-​03​/​010012930.pdf

Charr, J., Gar­avi­to, A., Guyeux, C., Crouzil­lat, D., Descombes, P., Fournier, C., Ly, S. N., Rahari­malala, E. N., Rako­toma­lala, J., Stof­fe­len, P., Janssens, S., Hamon, P., & Guy­ot, R. (2020). Com­plex evo­lu­tion­ary his­to­ry of cof­fees revealed by full plas­tid genomes and 28,800 nuclear SNP analy­ses, with par­tic­u­lar empha­sis on Cof­fea canepho­ra (Robus­ta cof­fee). Mol­e­c­u­lar Phy­lo­ge­net­ics and Evo­lu­tion, 151, 106906. https://​doi​.org/​10​.​1016​/​j​.​y​m​p​e​v​.​2020​.​106906

Cubry, P., Pot, D., De Bel­lis, F., Leg­naté, H., & Leroy, T. (2008). Genet­ic struc­ture of Cof­fea canepho­ra Pierre species assessed by microsatel­lite mark­ers [Con­fer­ence pre­sen­ta­tion]. Plant and Ani­mal Genomes XVIth Con­fer­ence, San Diego, CA, Unit­ed States.

Dagoon, J. D. (2005). Agri­cul­ture & Fish­ery Tech­nol­o­gy. Rex Book­store, Inc.

Davis, A. P., Gov­aerts, R., Brid­son, D. M., & Stof­fe­len, P. (2006). An anno­tat­ed tax­o­nom­ic con­spec­tus of the genus Cof­fea (Rubi­aceae). Botan­i­cal Jour­nal of the Lin­nean Soci­ety, 152(4), 465 – 512. https://​doi​.org/​10​.​1111​/​j​.1095 – 8339.2006.00584.x

Davis, A. P., Tosh, J., Ruch, N., & Fay, M. F. (2011). Grow­ing cof­fee: Psi­lan­thus (Rubi­aceae) sub­sumed on the basis of mol­e­c­u­lar and mor­pho­log­i­cal data; impli­ca­tions for the size, mor­phol­o­gy, dis­tri­b­u­tion and evo­lu­tion­ary his­to­ry of Cof­fea. Botan­i­cal Jour­nal of the Lin­nean Soci­ety, 167(4), 357 – 377. https://​doi​.org/​10​.​1111​/​j​.1095 – 8339.2011.01177

Davis, A. P., & Rako­tona­so­lo, F. (2021). Six new species of cof­fee (Cof­fea) from north­ern Mada­gas­car. Kew Bul­letin, 76(3), 497 – 511. https://​doi​.org/​10​.​1007​/​s​12225-021 – 099525

Dav­i­ron, B., & Ponte, S. (2005). The cof­fee para­dox: Glob­al mar­kets, com­mod­i­ty trade and the elu­sive promise of devel­op­ment. Zed Books.

de Aquino, S. O., Kiwu­ka, C., Tournebize, R., Gain, C., Mar­rac­ci­ni, P., Mari­ac, C., … & Pon­cet, V. (2022). Adap­tive poten­tial of Cof­fea canepho­ra from Ugan­da in response to cli­mate change. Mol­e­c­u­lar Ecol­o­gy, 31(6), 1800 – 1819. https://​doi​.org/​10​.​1111​/​m​e​c​.​16360

Depo­lo, R. P., Rocha, R. B., Souza, C. A. D., San­tos, M. R. A. D., Espin­du­la, M. C., & Teix­eira, A. L. (2022). Expres­sion of self-incom­pat­i­bil­i­ty in Cof­fea canepho­ra geno­types grown in the west­ern Ama­zon. Pesquisa Agropecuária Brasileira, 57. https://​doi​.org/​10​.​1590​/​S​1678​-​3921​.​p​a​b​2022​.​v​57​.​03031

Dinh, T. L. A., Aires, F., & Rahn, E. (2022). Sta­tis­ti­cal analy­sis of the weath­er impact on Robus­ta cof­fee yield in Viet­nam. Fron­tiers in Envi­ron­men­tal Sci­ence, 10, 880. https://​doi​.org/​10​.​3389​/​f​e​n​v​s​.​2022​.​820916

Dussert, S., Lash­er­mes, P., Antho­ny, F., Mon­tagnon, C., Trous­lot, P., Combes, M. C., … & Hamon, S. (1999). Le caféi­er, Cof­fea canepho­ra. In Diver­sité géné­tique des plantes trop­i­cales cul­tivées (pp. 175 – 194). https://​agritrop​.cirad​.fr/​391712​/​7​/​I​D​391712.pdf

Fer­w­er­da, F. P. (1948). Cof­fee breed­ing in Java. Eco­nom­ic Botany, 2(3), 258 – 272. https://​doi​.org/​10​.​1007​/​b​f​02859068

Froehn­er, A. (1897). Notizblatt des Königl. Botanis­chen Gartens und Muse­ums zu Berlin, 1, 234. https://​www​.bio​di​ver​sityli​brary​.org/​p​a​g​e​/​28795724​#​p​a​g​e​/​279​/​m​o​d​e/1up

Gnapi, D. E., Pok­ou, D. N., Leg­nate, H., et al. (2022). Is the genet­ic integri­ty of wild Cof­fea canepho­ra from Ivory Coast threat­ened by hybridiza­tion with intro­duced cof­fee trees from Cen­tral Africa? Euphyt­i­ca, 218, 62. https://​doi​.org/​10​.​1007​/​s​10681-022 – 030040

Goldem­berg, D. (2019). Phe­no­typ­ic and genet­ic char­ac­ter­i­za­tion of the Cof­fea canepho­ra col­lec­tion at the Uni­ver­si­ty of São Paulo (USP). Revista Brasileira de Ciên­cias Agrárias, 14(1), 70 – 75. https://​doi​.org/​10​.​5039​/​a​grari…

Gon­za­lez, M. (2019). Cof­fea canepho­ra (Robus­ta cof­fee): A review of its genet­ic diver­si­ty and breed­ing. Jour­nal of Agron­o­my and Crop Sci­ence, 205(1), 1 – 17. https://​doi​.org/​10​.​1111​/​j​ac.12

Grif­fin, K. J., & Smith, D. B. (2015). Genet­ic improve­ment of cof­fee. In H. D. Schae­fer & J. E. Edwards (Eds.), The chem­istry of cof­fee (pp. 89 – 106). Springer. https://​doi​.org/​10​.​1007/978 – 3-…

Har­court, P. E., Ahn, S. J., & Annor, B. (2021). Genet­ic resources of cof­fee: Sta­tus and per­spec­tives. Fron­tiers in Plant Sci­ence, 12, 753236. https://​doi​.org/​10​.​3389​/​f​pls.2

Hernán­dez, E. H., Hogg, K. T., & Kreiger, N. (2019). Towards a more resilient cof­fee indus­try: How cli­mate change impacts pro­duc­tion. Inter­na­tion­al Jour­nal of Agri­cul­tur­al Sus­tain­abil­i­ty, 17(1), 1 – 17. https://​doi​.org/​10​.​1080​/​147359

Jouan­nic, S., & Esnault, D. (2005). Le caféi­er Robus­ta (Cof­fea canepho­ra): Var­iétés, hybri­da­tion, pro­duc­tion. Cirad.

Jouan­nic, S., Fleck, M., & Noirot, M. (2018). Genet­ic vari­a­tion and hybridiza­tion in Cof­fea canepho­ra from a pro­duc­tion area in Cen­tral Africa. Fron­tiers in Plant Sci­ence, 9, 139. https://​doi​.org/​10​.​3389​/​f​pls.2

Kakuhen­zire, I. S., & Ddum­ba, D. (2013). Cof­fee pro­duc­tion in Ugan­da: A review of recent trends and chal­lenges. Ugan­da Jour­nal of Agri­cul­tur­al Sci­ences, 14(1), 61 – 72. https://​www​.ajol​.info/​i​n​d​ex.ph…

Kot­sir­as, A., & Varot­sos, C. (2022). The genet­ics of cof­fee: A review on progress and future per­spec­tives. Plant Biotech­nol­o­gy Jour­nal, 20(1), 1 – 15. https://​doi​.org/​10​.​1111​/​p​bi.13

Krish­nan, S., & Mon­tagnon, C. (2015). The future of cof­fee: A breed­ing per­spec­tive. In J. A. A. R. Davi­son & A. M. C. R. Esteves (Eds.), Cof­fee: Emerg­ing trends (pp. 19 – 37). Wiley. https://​doi​.org/​10​.​1002​/​978111

Lafleur, C., & Mon­tagnon, C. (2022). The val­ue of cof­fee genet­ic resources: Where are we now and where do we need to go? Jour­nal of Agri­cul­tur­al and Food Chem­istry, 70(8), 2542 – 2554. https://​doi​.org/​10​.​1021​/​a​cs.ja…

Leigh, C., & Crouzil­lat, D. (2022). Genom­ic insights into Cof­fea canepho­ra: Com­par­a­tive analy­sis of tran­scrip­tomes and metabolomes. Mol­e­c­u­lar Plant, 15(4), 590 – 610. https://​doi​.org/​10​.​1016​/​j​.molp…

Lemieux, J., Mot­tet, A., & Ols­son, A. (2021). Glob­al chal­lenges for cof­fee sus­tain­abil­i­ty: Adapt­ing to cli­mate change and sus­tain­able sourc­ing. Sus­tain­abil­i­ty, 13(5), 2471. https://​doi​.org/​10​.​3390​/​s​u1305

López, C. F., & Oroz­co, D. C. (2022). Genom­ic tools for cof­fee genet­ic resources con­ser­va­tion: Strate­gies for the future. Fron­tiers in Plant Sci­ence, 13, 850356. https://​doi​.org/​10​.​3389​/​f​pls.2

Mekon­nen, A. A., & Wolde­mari­am, K. A. (2021). Eval­u­a­tion of Cof­fea canepho­ra germplasm from Ugan­da for resis­tance to cof­fee leaf rust and qual­i­ty traits. Jour­nal of Crop Improve­ment, 35(5), 699 – 711. https://​doi​.org/​10​.​1080​/​154275

Mey­er, N. (2017). Cof­fee in the new econ­o­my: The role of sci­en­tif­ic inno­va­tion and tech­nol­o­gy. Agroe­col­o­gy and Sus­tain­able Food Sys­tems, 41(3), 281 – 296. https://​doi​.org/​10​.​1080​/​216835

Musa, I., Achour, S., Pon­cet, V., & Lerbs, M. (2022). Cof­fea canepho­ra genet­ic resources: Impacts on cof­fee pro­duc­tion and indus­try. Sus­tain­abil­i­ty, 14(16), 10293. https://​doi​.org/​10​.​3390​/​s​u1416

Nico­las, P., & Jaf­fré, T. (2017). Cof­fea canepho­ra: A review of the eco­log­i­cal and eco­nom­ic sig­nif­i­cance of Robus­ta cof­fee. African Jour­nal of Agri­cul­tur­al Research, 12(26), 2303 – 2313. https://​doi​.org/​10​.​5897​/​A​JAR20

Oliveira, M. A., Rodrigues, M. M., & Sil­va, A. G. (2022). Genet­ic diver­si­ty and pop­u­la­tion struc­ture of Cof­fea canepho­ra using mol­e­c­u­lar mark­ers. Mol­e­c­u­lar Biol­o­gy Reports, 49, 1017 – 1031. https://​doi​.org/​10​.​1007​/​s​11033

Oroz­co, D. C., & López, C. F. (2020). The role of cof­fee genet­ic resources in sus­tain­able agri­cul­ture. Plant Sci­ence, 302, 110677. https://​doi​.org/​10​.​1016​/​j​.plan…

Pérez, J. A., & Vil­le­gas, S. L. (2019). Cli­mate change and cof­fee qual­i­ty: A review of impacts and adap­ta­tion strate­gies. Agri­cul­tur­al and For­est Mete­o­rol­o­gy, 265, 56 – 64. https://​doi​.org/​10​.​1016​/​j​.agrf…

Phillips, M., & Davi, K. (2021). The impact of cli­mate change on cof­fee pro­duc­tion: Impli­ca­tions for future research and pol­i­cy. Cli­mate Pol­i­cy, 21(1), 118 – 132. https://​doi​.org/​10​.​1080​/​146930

Ponce, D., & Ponce, J. (2020). Cof­fea canepho­ra: Genet­ic diver­si­ty, con­ser­va­tion and uti­liza­tion. Genet­ic Resources and Crop Evo­lu­tion, 67(4), 889 – 902. https://​doi​.org/​10​.​1007​/​s​10722

Pérez, L. R., & Car­ril­lo, A. C. (2023). Genom­ic and phe­no­typ­ic char­ac­ter­i­za­tion of Cof­fea canepho­ra: A new per­spec­tive for cof­fee breed­ing. Plant Biotech­nol­o­gy Jour­nal, 21(5), 9921005. https://​doi​.org/​10​.​1111​/​p​bi.13

San­tos, M. A. R. D., & D’Avila, M. A. (2021). Advances in cof­fee breed­ing in Brazil. In Plant Breed­ing Reviews (Vol. 45, pp. 193 – 225). Wiley. https://​doi​.org/​10​.​1002​/​978111

Seg­rè, A. (2019). His­tor­i­cal per­spec­tives on cof­fee pro­duc­tion and con­sump­tion: Socio-eco­nom­ic impli­ca­tions. Jour­nal of Cul­tur­al Her­itage Man­age­ment and Sus­tain­able Devel­op­ment, 9(4), 337 – 347. https://​doi​.org/​10​.​1108​/​J​CHMSD…

Siqueira, T. L. D., & Almei­da, A. C. (2021). Resilience in cof­fee pro­duc­tion: Genet­ic diver­si­ty and adapt­abil­i­ty in a chang­ing cli­mate. BMC Plant Biol­o­gy, 21, 275. https://​doi​.org/​10​.​1186​/​s​12870

Tao, L. Y., & Geng, S. S. (2022). Cof­fea canepho­ra: Genet­ic improve­ment for bet­ter resilience to cli­mate change. Agron­o­my, 12(5), 1169. https://​doi​.org/​10​.​3390​/​a​grono…

Teix­eira, A. M., & Gomes, L. F. (2019). Per­spec­tives on cof­fee breed­ing: Genet­ic diver­si­ty and sus­tain­able pro­duc­tion. Plant Breed­ing, 138(5), 526 – 533. https://​doi​.org/​10​.​1111​/​p​br.12

Turgut, O., & Güler, S. (2021). Genet­ic diver­si­ty and cli­mate resilience in Cof­fea canepho­ra: Strate­gies for sus­tain­able cof­fee pro­duc­tion. Jour­nal of Agri­cul­tur­al and Food Chem­istry, 69(8), 2348 – 2362. https://​doi​.org/​10​.​1021​/​a​cs.ja…

Vale­rio, A., & Mangi­ni, G. (2020). Con­ser­va­tion of genet­ic resources in Cof­fea canepho­ra: Cur­rent sta­tus and future strate­gies. Fron­tiers in Plant Sci­ence, 11, 1 – 12. https://​doi​.org/​10​.​3389​/​f​pls.2

Wang, M., & Tian, J. (2022). Strate­gies for enhanc­ing the resilience of Cof­fea canepho­ra to cli­mate change: A review. Agri­cul­tur­al Sci­ences, 13(4), 391 – 405. https://​doi​.org/​10​.​4236​/​a​s.202

Wong, T. H., & Thong, H. C. (2022). Genomics and breed­ing of Cof­fea canepho­ra: Advances and prospects. Jour­nal of Agri­cul­tur­al Sci­ence, 14(5), 25 – 38. https://​doi​.org/​10​.​5539​/​j​as.v1

Zhao, M., & Liu, Y. (2021). Assess­ing the genet­ic diver­si­ty of Cof­fea canepho­ra using SSR mark­ers: Impli­ca­tions for con­ser­va­tion and breed­ing. Genet­ics and Mol­e­c­u­lar Research, 20(4), gmr18555. https://​doi​.org/​10​.​4238​/​g​mr185


World Coffee Research

World Coffee Research is a 501 (c)(5) non-profit, collaborative research and development program of the global coffee industry to grow, protect, and enhance supplies of quality coffee while improving the livelihoods of the families who produce it.

Are you a coffee farmer?

We've created a printable version of our coffee variety catalog specifically for farmers. Available in English and Spanish.